
BABES, -BOLYAI UNIVERSITY CLUJ-NAPOCA
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

SPECIALIZATION COMPUTER SCIENCE

DIPLOMA THESIS

GCSF – A VIRTUAL FILE
SYSTEM BASED ON

GOOGLE DRIVE

Supervisor
Lect. dr. Mircea Ioan-Gabriel

Author
Pus,cas, Sergiu Dan

2018

UNIVERSITATEA BABES, -BOLYAI CLUJ-NAPOCA
FACULTATEA DE MATEMATICĂ S, I INFORMATICĂ

SPECIALIZAREA INFORMATICĂ ENGLEZĂ

LUCRARE DE LICENT, Ă

GCSF – UN SISTEM DE
FIS, IERE VIRTUAL BAZAT

PE GOOGLE DRIVE

Conducător s, tiint, ific
Lect. dr. Mircea Ioan-Gabriel

Absolvent
Pus,cas, Sergiu Dan

2018

Contents

1 Introduction 5

2 State of the art 6
2.1 Cloud storage services . 6
2.2 User interface . 7
2.3 File sync . 9
2.4 Main advantages . 10

2.4.1 Cloud storage . 10
2.4.2 File sync . 10
2.4.3 Service integration . 11

2.5 Main disadvantages . 11
2.5.1 File sync . 11
2.5.2 Security . 11
2.5.3 Availability . 12
2.5.4 Power user experience 12

3 Proposed approach 14
3.1 Aim . 14
3.2 Summary . 14
3.3 Usage . 15

3.3.1 Exceptions . 17
3.4 Implementation . 18

3.4.1 Rust . 18
3.4.2 FUSE . 20
3.4.3 Drive API . 20
3.4.4 Architecture . 21
3.4.5 Configuration . 21
3.4.6 Caching and laziness 21

3.5 Problems encountered . 24
3.5.1 Shared files . 24
3.5.2 ‘My Drive’ id . 25

3

4 CONTENTS

3.5.3 File attributes . 25
3.5.4 Updating file metadata on Drive 27
3.5.5 Detecting remote changes 28

4 Performance evaluation 29
4.1 GDriveFS . 30
4.2 google-drive-ocamlfuse . 32
4.3 Benchmarks . 33

4.3.1 Methodology . 33
4.3.2 Mounting and startup 33
4.3.3 File listing . 34
4.3.4 Reading – empty cache 34
4.3.5 Reading – cached . 35

5 Conclusion 37
5.1 External links . 38

Bibliography 39

Chapter 1

Introduction

The past decade has brought the rise of cloud storage services as an extension
of traditional disk-based storage systems. There are many options to choose
from, and multiple ways of interacting with them. Chapter 2 analyses some
of the most popular choices. This thesis will focus on a particular service –
Google Drive.

Unfortunately, business requirements encourage companies to target the
largest demographic possible, in order to provide the best experience for the
average user. This puts advanced users at a disadvantage. Chapter 3 aims
to provide a solution tailored specifically for them. This solution comes in
the form of a new desktop application for Unix-like systems, named GCSF.
GCSF is a virtual file system built on top of Google Drive, allowing users
to mount their account locally and interact with it as they would with a
traditional disk-based storage system.

Chapter 4 explores existing alternatives and compares them against GCSF,
focusing on two aspects – performance and user experience.

Finally, Chapter 5 provides some directions for further development and
improvement, and reflects on the progress made since the beginning of this
project.

5

Chapter 2

State of the art

2.1 Cloud storage services

Cloud storage services have been steadily increasing in popularity and reached
mainstream status in the past decade. In essence, these services allow users
to upload and store files on the internet without the need to own the physical
storage medium. Files can be accessed from almost any “smart” consumer
device with an internet connection, provided that the user follows the re-
quired authentication process.

Most cloud storage services provide free plans, which usually limit the
total storage capacity. Their premium plans either follow the subscription
business model or even go as far as to require a one-time purchase in exchange
for a lifetime subscription [13].

As of July 2018, some of the most popular names ring a bell even to
non-technical users:

• Microsoft OneDrive – 115 million customers between 2007 and 2017 [49]

• Google Drive – 800 million active users, March 2017 [44, 58]

• Apple iCloud Drive – a subsystem of Apple iCloud, which reached 782
million users in February 2016 [1]

• Box Drive – 47 thousand paying customers as of August 2015 [3]

• Dropbox – 500 million registered users, 10 million paying users as of
December 2017 [51]

This is no coincidence. It is a common practice among tech companies
to attempt to draw users into their own ecosystem, especially when it is a
vast one. Consumers that already use several products owned by the same

6

2.2. USER INTERFACE 7

company tend to favor that company’s other products over their direct com-
petitors’. There are multiple advantages in doing so. For one, familiarity
is a key factor. A competitor’s service may be more difficult to use by a
consumer who is unfamiliar with it. In addition, a single ecosystem provides
greater cohesion between its different elements. This translates into better
integration between services, which improves the overall user experience.

Two of the largest technology companies – Apple Inc. and Alphabet Inc.
– are commonplace examples of this strategy. Users who sign up for a free
Gmail account automatically receive an associated 15 GB storage plan on
Google Drive. Moreover, this storage is shared among three different services:
Google Drive, Gmail and Google Photos. Similarly, Apple offers 5 GB of free
storage on iCloud:

iCloud is built into every Apple device. That means all your
stuff — photos, files, notes, and more — is safe, up to date, and
available wherever you are. And it works automatically, so all
you have to do is keep doing what you love. Everyone gets 5 GB
of free iCloud storage to start, and it’s easy to add more at any
time. [26]

It seems that offering free storage is similar in concept to planting a seed
that will reap a greater harvest. Indeed, making a user familiar with your
service will make him more likely choose your premium plan when deciding
to upgrade, instead of your competitor’s.

2.2 User interface

All services mentioned in section 2.1 support user interaction through web
platforms which allow users to manage their files and data from a web
browser. Web browsers represent an ubiquitous category of software pro-
grams, so a large userbase can enjoy cloud storage services without the over-
head of installing additional software on their machines.

These interfaces are updated regularly with new features and improved
design. In May 2018, Google rolled out a new update for Drive which is
more in tune with its latest material design principles [23, 24]. Some of the
changes can be observed in figures 2.1 and 2.2.

A secondary medium is represented by mobile applications. As of July
2018, Google Drive for Android has more than one billion installs [15]. Drop-
box and OneDrive are close behind, with more than 500 million and 100
million installs, respectively [10, 31].

8 CHAPTER 2. STATE OF THE ART

Figure 2.1: Google Team Drive before redesign. Source: [23]

Figure 2.2: Google Team Drive after redesign. Source: [23]

2.3. FILE SYNC 9

Figure 2.3: No Drive app for Linux. Source: Backup and Sync [2]

2.3 File sync

Originally, users did not interact with cloud storage services as they do today.
When Dropbox was initially founded in 2007, it did not rely on a web interface
for its service. It did not even own the dropbox.com domain [52]. Users had
to download a desktop application from getdropbox.com and run it locally,
thus interacting with the service.

The application followed an approach that was mainly designed by An-
drew Houston, the company’s CEO. The key element was a special folder
added to the user’s file system. This folder was then synced to all devices
that were linked to the same Dropbox account. Any file placed in this folder
would get sent to the cloud and become available to other devices.

The success of Dropbox convinced other companies to follow suit. Google
Drive was introduced in April 2012 for Windows, macOS and Android [67].
A few months later, an iOS application was launched as well [45].

In the same year, Google famously told users: “We’re working on Linux
support – hang tight!” [63]. The announcement went under the radar and
the project was eventually canceled. This gave birth to an infamous joke
website which counts how much time users have been waiting for the Linux
client [78].

In September 2017, Google made another announcement regarding the
desktop application. The official Drive app would be discontinued in March
2018, its place being taken by the new Backup and Sync app [72, 50]. Un-
fortunately, it doesn’t support Linux either, as seen in fig. 2.3.

It is easy to notice then that Linux users have been at a disadvantage ever

dropbox.com
getdropbox.com

10 CHAPTER 2. STATE OF THE ART

since Drive was first launched. They essentially had three options: switch to
a different storage service or operating system, use the web platform, or use
unofficial third-party clients, which were usually bugged and lacked complete
functionality.

2.4 Main advantages

2.4.1 Cloud storage

Many technology consumers and enthusiasts use cloud storage services on
a daily basis. Compared to traditional disk-based storage systems, cloud-
based services provide several advantages. The most palpable one is data
redundancy and backup. Users no longer risk the chance of losing their data
due to a lost or stolen device or because of a hardware failure. Files that
are stored in the cloud provide an extra layer of safety. On top of this,
file sharing becomes almost trivial. What used to require manual transfers
between different storage mediums (e.g. floppy disks, CDs, flash drives or
external hard drives) is now done almost entirely automatically. It is enough
to place the desired files in the special folder on a computer and they will
appear on all other linked devices which have an internet connection.

Indeed, this is the inconvenience that gave birth to Dropbox. Andrew
Houston founded the company after repeatedly forgetting his USB flash drive
while being a student at MIT [25].

Another advantage is cross-platform integration. Over a third of the
world’s population owns a smartphone, and this number is expected to grow
in the coming years [56]. Therefore, cloud storage services narrow the gap
between traditional desktop computers and mobile phones.

Finally, the freemium model adopted by many of the services mentioned
in section 2.1 translates into free extra storage for everyday users. Even
the paid plans are a strong competitor for traditional storage systems. In
2018, the cost per gigabyte of storage commonly reaches values as low as
$0.05/GB [55]. With Google Drive’s most popular paid plan, this value
is approximately 4 times lower: $0.012/GB/month [19]. Although this is
a recurrent cost, it often makes sense financially to opt for cloud storage,
especially with all the other provided benefits.

2.4.2 File sync

File syncing is in itself an enticing feature. Having a special folder on an
existing file system comes with no additional learning curve. Any computer-

2.5. MAIN DISADVANTAGES 11

literate user can instantly make sense of such a service and use it without
prior preparation. Having the data physically present on the local storage
system makes it readily available and still accessible even in the absence of
an internet connection.

2.4.3 Service integration

As discussed in section 2.1, cloud storage services are seldom provided by
themselves. The best example of this is Google, which aims to merge most
of its services into a cohesive and consistent user experience. Special files
created in Google Docs, Forms, Sheets or Slides use Drive as the storage
medium and integrate with it seamlessly. Files can easily be shared with
Gmail contacts. Mail attachments can be saved to Drive with a single click.
This improves workflow of many consumers globally. Teams no longer have to
pass text documents back and forth; all members can edit the same document
at the same time.

2.5 Main disadvantages

2.5.1 File sync

Although generally regarded as a good idea, the file sync concept has at
least one disadvantage. It requires data to be physically stored on the user’s
machine. This can be a limiting factor if the storage capacity of the machine
is on the lower end of the spectrum. In this case, storing the files only in the
cloud and having access to them locally as needed is a better alternative.

2.5.2 Security

Although useful in many aspects, the rise of cloud storage services is a cause
of worry for many users. One of the main concerns comes from the risk asso-
ciated with storing sensitive information on someone else’s servers, making
it vulnerable to data breaches and leaks.

Dropbox is just one case of controversy. In June 2011 an authentication
problem allowed the access of multiple accounts for several hours without
passwords [53]. In August 2016, 68 million accounts have been compromised
by hackers who stole email addresses and hashed passwords [61].

12 CHAPTER 2. STATE OF THE ART

2.5.3 Availability

Throughout the years, web services in general have proved that 100% relia-
bility is unachievable in practice. Google offers a 99.9% uptime guarantee for
G Suite customers of Google Drive [20]. However, there have been multiple
outages since the service’s initial launch in 2012:

• March 2013 [66]

• October 2014 [80]

• January 2016 [48]. Google later apologized:

At Google we recognize that failures are statistically inevitable,
and we strive to insulate our users from the effects of failures.
As that did not happen in this instance, we apologize to every-
one who was inconvenienced by this event. Our engineers are
conducting a post-mortem investigation to determine how to
make our services more resilient to unplanned network fail-
ures, and we will do our utmost to continue to make Google
service outages notable for their rarity. [81]

• September 2017 [62]

These outages carry an immense impact on users. When all Google ser-
vices went out for 5 minutes in August 2013, the total internet traffic dropped
by 40% [74]. Even so, Google Drive’s reliability still beats that of user-owned
hardware. Consumers are more likely to lose data because of their own hard
drives failing than Google’s. Still, the perceived effect is the opposite. When
you lose your data, you might be tempted to pass it off as a fact of life. When
Google loses your data, there is outrage, and rightly so.

2.5.4 Power user experience

Although cloud hosting services usually provide a first-rate user experience,
they do not cover every possible use case. This is especially true when dis-
cussing about power users. For the purpose of this argument, I will use the
following definition of the term:

(noun) power user: a computer user who uses advanced features of com-
puter hardware, operating systems, programs, or web sites which are not
used by the average user.

2.5. MAIN DISADVANTAGES 13

This includes students, professional programmers, hobbyists and all other
computer users with a large knowledge base who like to tinker with computers
in interesting and unexpected ways.

This description matches the traditional stereotype of a computer hacker.
The term is known in popular press as someone who breaks into computers.
However, it has a different meaning among programmers. In this context, a
hacker is usually someone who strikes to achieve mastery by their own merit,
being driven by curiosity more often than not. It is not necessarily a com-
puter term: a famous anecdote regarding Nobel laureate Richard Feynman
describes his pastime of breaking into safes containing secret documents just
for the fun of it [59].

Hackers often create wealth by writing open source software and publish-
ing it for the entire world to use and modify freely [47]. Plenty of them come
into contact with programming at an early age and follow formal education
only as a secondary way of learning. Hackers are seldom happy with their
systems and their knowledge. They always seek new and better ways of mak-
ing computers do what they want. Living in the terminal usually becomes
the preferred way of getting things done.

Although Linux has a modest market share of only 2.16% for desktop and
laptop usage, it is far more popular with developers and power users, 48.3%
of them having used a variation of it for development work in 2018 [29, 6].

It is therefore unfortunate that the very people who create software are
the ones who benefit the least from it, at least in the case of cloud hosting
services. Forcing a power user to use a browser in order to share files can
easily be an impediment to their productivity. The command line simply
does not pair well with browser-based web services. Imagine wanting to
write a script that uploads some backup file to such a service and having
to implement it in a way that integrates it into the browser. This sort of
automation task is not unheard of among power users, yet the lack of native
Linux support makes it way harder than it has to be.

Chapter 3 provides a solution to this problem.

Chapter 3

Proposed approach

3.1 Aim

This project aims to improve the experience of using Google Drive specifically
for power users. Regular users can benefit from it as well – provided they
follow some prerequisite steps in order to use the application.

If successful, it will drastically diminish the some of the issues described
in section 2.5.

3.2 Summary

In essence, Google Drive is nothing more than a remote storage system. All
the operations that a user might want to execute on a local storage system
(e.g. copying files, creating and organising directories, reading and writing
data) have an equivalent operation on Google Drive.

Disk-based storage devices are organized by the operating system using a
file system in order to keep track of all the data they contain. This happens
behind the scenes. Users can interact with the storage device using system
calls. Some of the more popular ones are read, write, close, wait, exec,
fork, exit, kill. Note that not all of these deal with file storage. Some
of them are a proxy which expose different functionalities of the operating
system. In addition, users seldom execute system calls manually. It is the
task of higher level applications to do this instead.

An interesting concept comes to mind: why not model a Google Drive
account in such a way that it behaves identically to a traditional file system?
The only difference would be that instead of storing and reading data from
a local disk, it would interact with Google’s servers.

GCSF does exactly that. It is a virtual file system on top of Google Drive.

14

3.3. USAGE 15

1 $ gcsf

2 GCSF 0.1.3

3 Sergiu Puscas <srg.pscs@gmail.com >

4 Filesystem based on Google Drive

5

6 USAGE:

7 gcsf <SUBCOMMAND >

8

9 FLAGS:

10 -h, --help Prints help information

11 -V, --version Prints version information

12

13 SUBCOMMANDS:

14 help Prints this message or the help of the given

subcommand(s)

15 logout Delete credentials file

16 mount Mount the file system

Listing 3.1: GCSF help menu

1 $ gcsf mount /mnt/gcsf

2 Please direct your browser to https :// accounts.google.com/o/

oauth2 /[...] and follow the instructions displayed there.

Listing 3.2: GCSF mount

It allows users to mount their Drive account locally and interact with it as
they would with a regular disk partition. This is achieved using the FUSE
(Filesystem in Userspace) interface [28], as described in section 3.4.

3.3 Usage

Before delving into implementation details, I present a brief overview of how
GCSF works from the user perspective.

GCSF consists of a single binary. When executed with no arguments, it
prints a help menu as seen in listing 3.1. Users can choose to mount the
file system to a local directory. GCSF points to an authentication URL
(listing 3.2) that must be accessed in order to authorize access to Google
Drive (fig. 3.1). Upon completing the authentication process, GCSF mounts
the file system and populates it with all files and directories contained in the
My Drive directory on Google Drive. This can be observed using tools such
as df (listing 3.3) and mount (listing 3.4).

Now the mount directory can be accessed using a file explorer such as

16 CHAPTER 3. PROPOSED APPROACH

Figure 3.1: Google Drive authorization

1 $ df -h

2 Filesystem Size Used Avail Use% Mounted on

3 /dev/nvme0n1p5 64G 45G 17G 74% /

4 /dev/nvme0n1p6 644G 559G 53G 92% /home

5 /dev/nvme0n1p1 256M 73M 184M 29% /boot

6 GCSF 15G 11G 4.6G 70% /mnt/gcsf

Listing 3.3: Size and capacity of mounted file systems

1 $ mount | grep GCSF

2 GCSF on /mnt/gcsf type fuse (rw ,nosuid ,nodev ,relatime ,user_id

=1000, group_id =100, allow_other)

Listing 3.4: Output of mount

3.3. USAGE 17

Figure 3.2: Ranger window

Figure 3.3: Thunar window

Ranger (fig. 3.2) or Thunar (fig. 3.3). Command line programs such as ls

or exa work as well (fig. 3.4). From this point onward, the mount directory
can be treated as a regular local directory apart from a few exceptions.

3.3.1 Exceptions

As can be seen in fig. 3.4, some files have a # symbol attached at the end of
their name. This is the case for special Google Drive files, including spread-
sheets, docs and slides. Since their file format and size is undefined at this
point, GCSF reports the maximum file size supported for these types of files.
When such a file is accessed by a user, GCSF chooses the most appropri-
ate filetype and exports the file from Drive. It also adds the appropriate
extension to the file name and updates its real size (fig. 3.5). Due to the

18 CHAPTER 3. PROPOSED APPROACH

Figure 3.4: File listing

Figure 3.5: Exporting Google Docs as OpenDocument files.

nature of such files, they cannot be edited locally and are essentially limited
to read-only access. However, they can be exported in a known file format,
edited locally and then stored separately using GCSF.

3.4 Implementation

3.4.1 Rust

Rust is a relatively new systems programming language sponsored by the
Mozilla Foundation [34]. According to The Rust Programming Language
book [54],

Rust is a programming language that helps you write faster, more
reliable software. High-level ergonomics and low-level control are
often at odds with each other in programming language design;
Rust stands to challenge that. Through balancing powerful tech-
nical capacity and a great developer experience, Rust gives you
the option to control low-level details (such as memory usage)
without all the hassle traditionally associated with such control.

3.4. IMPLEMENTATION 19

From this description, Rust seems like a good fit for this type of project.
However, there are a few specific reasons why I chose it instead of a different
language:

1. Performance. Rust is in many cases on par with C/C++ (or even
faster!) in terms of performance [4]. Compared to interpreted lan-
guages like Python or Ruby, this is a clear advantage.

2. Type safety. Any code that may lead to undefined behavior in Rust
must be explicitly wrapped within an unsafe { } block, making it
the programmer’s responsibility to make sure that the code is correct.
GCSF contains a single unsafe block, required for mounting the file
system [11].

3. Memory safety.

• No null pointer dereferences. Rust does not have the concept of
a NULL pointer. Instead, it uses a construct borrowed from the
functional world (Option<T>) which encourages the programmer
to always check the existence of a packed value.

• No dangling pointers. Instead of using a garbage collector, Rust
has a set of rules that define when and how allocated memory
is freed. All of these rules are enforced at compile time, thus
eliminating an entire category of runtime errors. The rules are:

(a) Any value has a single owner at any given time.
(b) References can not outlive the objects they point to.
(c) At any point, there can be at most one mutable reference or

any number of immutable (read-only) references to a value.

• No buffer overruns.

4. Easy integration of third-party libraries using the cargo package man-
ager and the official package registry [38].

5. Support for the functional paradigm. Rust uses many functional con-
cepts, closures and iterators being two notable examples.

6. Standardized ecosystem and builtin tools. Rust packages are commonly
published on crates.io [38]. Documentation is generated by rustdoc

and published automatically to docs.rs [8]. The official style guide can
be enforced using rustfmt.

7. Community and growth. According to the stackoverflow developer sur-
vey [7], developers have chosen Rust as the most loved programming
language for three years in a row.

crates.io
docs.rs

20 CHAPTER 3. PROPOSED APPROACH

Some of the points stated above are discussed in more depth in Jim
Blandy’s book Why Rust? [42].

3.4.2 FUSE

FUSE (Filesystem in Userspace) is a project that allows users to create
virtual file systems in the user level. Internally, it delegates tasks to a kernel
module. As a result, users do not have to interact with the kernel directly.
FUSE is a popular choice for esoteric file systems which do not store data
themselves. A few notable examples are sshfs [36], which mounts a remote
file system using SFTP [35], and WikipediaFS [40] which allows users to view
and edit articles locally.

FUSE is made up of two components:

• the fuse kernel module

• the libfuse userspace library

FUSE file systems are usually implemented as regular applications that
interact with the libfuse library. This library provides two interfaces that
are useful for defining the behavior of the file system. In both cases, the
file system receives incoming requests from the kernel, which are provided as
calls to methods defined in the interface.

First, there is the high-level interface. It uses concepts such as file names
and paths in most of its methods. Second, there is the low-level interface,
which uses inodes in order to identify files [75]. GCSF uses the latter be-
cause of the available language library for Rust, provided through the fuse

crate [33].

3.4.3 Drive API

Google provides a REST API for interacting with Drive [21]. It also provides
official client libraries for multiple programming languages: Java, JavaScript,
.NET, Objective-C, PHP and Python. There are also early-stage libraries
for Dart, Go, Node.js and Ruby.

Unfortunately, Rust is not officially supported. There is however a set of
unofficial libraries, programmatically generated by Sebastian Thiel [76, 77].
Although imperfect, they are good enough for the scope of this project. Some
limitations are described in section 3.5.

3.4. IMPLEMENTATION 21

3.4.4 Architecture

The heart of the application is the GCSF struct. It implements the Filesystem
trait from the fuse module, essentially making it a mountable file system.
Internally, a FileManager is used for bookkeeping. The FileManager pro-
vides all the required functionality for dealing with local files and directories.
It keeps track of the file hierarchy, inodes, metadata and performs regular
syncs. In order to communicate with Drive, it uses a DriveFacade which
facilitates remote operations. The DriveFacade is linked to the user’s ac-
count.

These abstractions create a distinct separation of responsibilities. For
instance, anything that requires network communication is performed by the
DriveFacade. Information about any file can be obtained by simply querying
the FileManager. (Un)mounting the file system and responding to system
calls is done by GCSF.

Figure 3.6 outlines how these components interact with each other.

3.4.5 Configuration

A configuration file can be used in order to set different parameters for GCSF.
One example can be found in listing 3.5.

3.4.6 Caching and laziness

Because internet connections tend to be slow and imperfect, GCSF aims re-
duce unnecessary network requests. The main way of achieving this is by
caching file contents. Considering that the content of a given file is unlikely
to be modified right after being accessed, it can be stored locally for a small
amount of time for faster access. The effect of such a strategy can be ob-
served by measuring the execution time of successive read operations on the
same file (listing 3.6). From a technical standpoint, this feature involves the
use of an LRU cache, which is incidentally a remarkably popular program-
ming interview question. Similarly, the reported file system size and capacity
values are also cached for a small amount of time. In addition, the file tree
is permanently maintained in-memory because of its insignificant size. This
allows both local and remote changes to be applied quickly.

The second strategy for reducing network requests consists of only up-
loading new data when necessary. In a UNIX environment, the action of
copying a single file might involve a large number of system calls. For in-
stance, the file might have to first be created (using a create call), then
have its attributes filled in (using a setattr call), then have its data written

22 CHAPTER 3. PROPOSED APPROACH

Figure 3.6: GCSF architecture

3.4. IMPLEMENTATION 23

1 ### This is the configuration file that GCSF uses.

2 ### It should be placed in $XDG_CONFIG_HOME/gcsf/gcsf.toml ,
3 ### which is usually defined as $HOME/. config/gcsf/gcsf.toml
4

5 # Show debug logs?

6 debug = true

7

8 # How long to cache the contents of a file after it has been

9 # accessed.

10 cache_max_seconds = 300

11

12 # How how many files to cache.

13 cache_max_items = 10

14

15 # How long to cache the size and capacity of the file system.

16 # These are the values reported by ‘df ’.

17 cache_statfs_seconds = 1

18

19 # How many seconds to wait before checking for remote changes

20 # and updating them locally.

21 sync_interval = 10000

22

23 # Mount options

24 mount_options = [

25 "fsname=GCSF",

26 "allow_root",

27 "big_writes",

28 "max_write =131072"

29]

30

31 # If set to true , Google Drive will provide a code after

32 # logging in and authorizing GCSF. This code must be copied

33 # and pasted into GCSF in order to complete the process.

34 # Useful for running GCSF on a remote server.

35 #

36 # If set to false , Google Drive will attempt to communicate

37 # with GCSF directly. This is usually faster and more

38 # convenient.

39 authorize_using_code = false

Listing 3.5: GCSF configuration file

24 CHAPTER 3. PROPOSED APPROACH

1 $ time file "/mnt/gcsf/LaTeX Guide.pdf"

2 LaTeX Guide.pdf: PDF document , version 1.5

3

4 real 0m2.751s

5 user 0m0.005s

6 sys 0m0.005s

7 $ time file "/mnt/gcsf/LaTeX Guide.pdf"

8 LaTeX Guide.pdf: PDF document , version 1.5

9

10 real 0m0.023s

11 user 0m0.017s

12 sys 0m0.001s

Listing 3.6: File caching in action

(using potentially many write calls with different offsets and data buffers)
and finally be flushed. Uploading every small change that comes with each
individual write call does not make a lot of sense. For this reason, GCSF
decides to be lazy and simply store the PendingWrites in memory. The op-
erations are only performed when a flush call is encountered, and the new
file content is uploaded as a whole afterwards.

3.5 Problems encountered

As with any sufficiently large project, GCSF involved a series of annoying
and obscure problems along the way. I will describe some of the most notable
ones in this section.

3.5.1 Shared files

The Google Drive REST API provides the files.list endpoint for listing
files which meet some criteria [16]. One of the filters that can be applied is
the sharedWithMe boolean. It instructs the API to include or omit files that
are shown in the Shared with me collection on Drive.

Early implementations of GCSF did not aim to manage shared files at all,
as this feature requires extra work to get right. Excluding shared files is easy
– just add sharedWithMe = false in the request. Unfortunately, this does
not work, as reported by multiple other developers [22, 14, 17]. Instead of
returning the requested list of files, the API returns a 500 Internal Server
Error. There is no warning sign for this behavior.

A possible workaround consists of replacing the query with ‘me’ in

owners. This is intuitive – files that are shared with a user are usually

3.5. PROBLEMS ENCOUNTERED 25

not owned by that user, making the two queries partial substitutes for one
another. This workaround is not failproof. Exceptions exist and they lead
to inconsistent behavior.

The solution I opted for involves a different querying strategy. Instead
of asking for all files which are not shared, GCSF asks for files which are
direct children of the My Drive directory. This is equivalent to setting the
query to ‘root’ in parents. Afterwords, the returned files are processed.
In order to explore the rest of the file tree, GCSF recursively queries children
of any one of the directories obtained at the previous step. For instance, if
the children of the root directory are a, b and c, then the next query will
be ‘a’ in parents or ‘b’ in parents or ‘c’ in parents. This essen-
tially explores the file tree one level at a time, resulting in O(tree depth)
network requests.

3.5.2 ‘My Drive’ id

Every file on Google Drive has its own associated string identifier. As dis-
cussed in 3.5.1, GCSF populates the local file tree starting with the root (My
Drive) directory. This is achieved by setting the query ‘root’ in parents,
where ‘root’ is a placeholder recognized by the API. However, GCSF needs
to know the real identifier for this directory, because files placed in it will use
that identifier as their parent field.

The question is: how to obtain this identifier? There is no method for
retrieving it from the API.

One way is to get all files that match the ‘root’ in parents query and
check the actual identifier that they have in the parent field. GCSF can
then use this identifier instead of the ‘root’ placeholder from this point
onward. This method usually works, but there were some cases in which the
application crashed because of it. For instance, if there are absolutely no files
on Drive, the root identifier cannot be obtained. The current implementation
works around this limitation by postponing the operation until at least one
file is added to Drive.

3.5.3 File attributes

The fuse crate represents file attributes using the FileAttr struct, as seen in
listing 3.7. The perm field is an encoding which describes a file’s permissions,
essentially stating what any user on the system can and can’t do with that
particular file. Any Filesytem can alter these permissions using the setattr
method, as seen in listing 3.8.

26 CHAPTER 3. PROPOSED APPROACH

1 pub struct FileAttr {

2 pub ino: u64 ,

3 pub size: u64 ,

4 pub blocks: u64 ,

5 pub atime: Timespec ,

6 pub mtime: Timespec ,

7 pub ctime: Timespec ,

8 pub crtime: Timespec ,

9 pub kind: FileType ,

10 pub perm: u16 ,

11 pub nlink: u32 ,

12 pub uid: u32 ,

13 pub gid: u32 ,

14 pub rdev: u32 ,

15 pub flags: u32 ,

16 }

Listing 3.7: File attributes representation

1 fn setattr(

2 &mut self ,

3 _req: &Request ,

4 _ino: u64 ,

5 _mode: Option <u32 >,

6 _uid: Option <u32 >,

7 _gid: Option <u32 >,

8 _size: Option <u64 >,

9 _atime: Option <Timespec >,

10 _mtime: Option <Timespec >,

11 _fh: Option <u64 >,

12 _crtime: Option <Timespec >,

13 _chgtime: Option <Timespec >,

14 _bkuptime: Option <Timespec >,

15 _flags: Option <u32 >,

16 reply: ReplyAttr

17) { ... }

Listing 3.8: Setting file attributes

3.5. PROBLEMS ENCOUNTERED 27

Notice something missing? There is no argument for changing the file
permissions. This defeats the entire purpose of recognizing different user
permissions and is the reason why GCSF does not enforce this security fea-
ture.

3.5.4 Updating file metadata on Drive

The Rust library that GCSF uses is generated based on a template which
is mostly consistent with the API schema that Google provides. However,
there are some inconsistent methods which act as limitations for this project.

One of them regards updates on file metadata. GCSF sometimes has to
modify information about a file without changing its content. For instance,
renaming a file or moving it to a different directory are operations which
require this sort of behavior. In order to to this, a FileUpdateCall can be
used.

For context, most calls exposed by the library follow the builder pat-
tern [46]. The general structure is:

1 let result = hub.resource ().activity (...).doit();

Or specifically:

1 let result = hub.files().copy (...).doit();

2 let result = hub.files().create (...).doit();

3 let result = hub.files().list (...).doit();

4 let result = hub.files().delete (...).doit();

But the update call is different. Instead of exposing a public doit()

method which does all the work, it exposes two alternatives:

1 pub fn upload <RS >(

2 self ,

3 stream: RS ,

4 mime_type: Mime

5) -> Result <(Response , File)>

6

7 pub fn upload_resumable <RS >(

8 self ,

9 resumeable_stream: RS,

10 mime_type: Mime

11) -> Result <(Response , File)>

This means that there is no way to update a file’s metadata without
also providing new content. One terribly inefficient solution would consist
of first downloading the current file content, then modifying the relevant
file metadata and finally applying the changes by re-uploading the content

28 CHAPTER 3. PROPOSED APPROACH

exactly as it is, along with the new metadata. In fact, this is how earlier
versions of GCSF worked around this issue. As of version 0.1.2, GCSF uses
a custom fork [5] of the library which also exposes a new method which does
not require uploading file content:

1 pub fn doit_without_upload(mut self) -> Result <(Response ,

File)>

3.5.5 Detecting remote changes

GCSF aims to achieve data consistency in two directions: any change ap-
plied locally should also be applied on Drive, and any change applied re-
motely should also be reflected locally. Remote changes are detected using
the changes.list API endpoint [9]. GCSF follows the following polling
policy:

• It should ask for remote changes and apply them locally right before
serving user requests, so that the user only receives fresh data.

• It should not do this for every request, so that the added latency
does not impact the user experience. There should be a user-defined
cooldown period between syncs.

This generally works. Files added/removed/modified on the web or mo-
bile client are picked up by GCSF after a short while. No wasteful network
traffic is generated, as would be the case with regular polling. The delay
perceived by the user is present but not significant as it only occurs every
once in a while.

But there is a problem. The API seems to make up its own mind and
only return the requested changes when it wants. Sometimes, this happens
almost instantly. On other occasions, the user has to manually intervene and
remount the file system in order to preserve its consistency. This can lead to
problems which impair user experience.

Chapter 4

Performance evaluation

Although comparing GCSF with similar tools is a fuzzy task, I will attempt
to construct an appropriate performance analysis. For this purpose I have
selected two other projects:

• dsoprea/GDriveFS [64], which I personally used prior to starting work
on GCSF.

• astrada/google-drive-ocamlfuse [73] – the most popular project of those
mentioned in this section.

Besides the two, there are many other similar projects. Most of them
are either in early stages of development, abandoned, or serve a different
purpose:

• thejinx0r/node-gdrive-fuse [83] – unmaintained since February 2016.

• joe42/CloudFusion [27] – unmaintained since January 2015.

• S2Games/drivefs [71] – unmaintained since June 2014.

• BYVoid/gdrive [57] – unmaintained since October 2013.

• jcline/fuse-google-drive [43] – unmaintained since September 2012.

• thejinx0r/DriveFS [82] – undocumented as of June 2018 and still in
early stages of development.

• zond/futon [41] – unmaintained since December 2014. In addition, it
is “right now, and probably forever, read only” according to the docu-
mentation.

• dweidenfeld/plexdrive [79] – only allows read-only access and targets
media streaming.

29

30 CHAPTER 4. PERFORMANCE EVALUATION

As such, I have decided to exclude these projects from my analysis and
benchmarks. Here is a brief comparison of the chosen projects, as of 23 June
2018:

GCSF GDriveFS google-drive-ocamlfuse

GitHub
Statistics

Owner Sergiu Pus,cas, Dustin Oprea Alessandro Strada
First Commit April 2018 August 2012 May 2012
Commits 130 395 511
Releases 1 23 71
Contributors 1 6 12
Stars 11 491 2086
Forks 0 81 153

Technical
Details

Language Rust Python 2.7 OCaml
LoC 2093 5232 7962

In the next sections I will discuss each of these projects from a technical
standpoint and from a user perspective.

4.1 GDriveFS

As of June 2018, GDriveFS aims to be “an innovative FUSE wrapper for
Google Drive” [64]. It has been in development for the past six years, accu-
mulating along the way a total of almost 400 commits, 23 releases, 6 con-
tributors and 81 forks. As a consequence, GDriveFS has more features than
GCSF and its longevity makes it a time-proven piece of software. This has
been consistent with my personal experience. GDriveFS worked out of the
box in most situations where I attempted to use it.

Unfortunately, I also encountered some issues. I will walk through a first
time setup of this application in order to illustrate its drawbacks. First, we
create a new virtual environment using virtualenv in order to avoid conflicts
between global Python packages and the local requirements of GDriveFS. We
can easily install GDriveFS in this environment as a pip package.

1 $ virtualenv2 gdrivefs

2 New python executable in ./ gdrivefs/bin/python2

3 Also creating executable in ./ gdrivefs/bin/python

4 Installing setuptools , pip , wheel ... done.

5 $ source gdrivefs/bin/activate

6 (gdrivefs) $ pip install gdrivefs

7 Collecting gdrivefs

8 Collecting fusepy ==2.0.2 (from gdrivefs)

9 Collecting httplib2 ==0.8 (from gdrivefs)

10 [...]

4.1. GDRIVEFS 31

11 Successfully installed gdrivefs -0.14.9 [...]

Listing 4.1: Creating a virtual environment and installing GDriveFS

Now we are ready to run into our first problem. The official documen-
tation suggests using gdfstool auth_automatic in order to log in with our
Google account [65]. However, we encounter an error:

1 (gdrivefs) $ gdfstool auth_automatic

2 usage: gdfstool [-h] {auth ,mount} ...

3 gdfstool: error: argument command: invalid choice: ‘

auth_automatic ’ (choose from ‘auth ’, ‘mount ’)

Listing 4.2: GDriveFS nonexistent authentication command

It seems that there is an inconsistency between the documentation and
the application itself. No problem. We can follow the suggestion provided
by the error message and execute gdfstool auth instead. We provide the
-o flag in order to open the authentication form in a browser window. After
logging in and allowing the application to access our account, we are ready
to feed the access code into gdfstool:

1 (gdrivefs) $ gdfstool auth -a /tmp/credentials "$AUTH_CODE"
2 [...]

3 gdrivefs.errors.AuthorizationFailureError: Could not do auth -

exchange (this was either a legitimate error , or the auth -

exchange was attempted when not necessary): [SSL:

CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl

.c:726)

Listing 4.3: GDriveFS authentication error

This is strange. After researching the problem, we find a relevant open
issue on this subject [12]. According to user blitz313, the root cause is one of
the dependencies. Manual installation of package httplib2-0.10.3 (instead
of the required version 0.8) seems to solve this problem and we can finally
mount the file system:

1 (gdrivefs) $ gdfstool mount /tmp/credentials /mnt/gdrivefs

2 (gdrivefs) $ ls /mnt/gdrivefs/

3 drwxrwxrwx@ - sergiu 11 Jun 18:56 Books

4 drwxrwxrwx@ - sergiu 11 Jun 19:04 School projects

5 drwxrwxrwx@ - sergiu 11 Jun 18:59 Stock photo collection

6 .rw -rw -rw -@ 1.0k sergiu 11 Jun 18:57 Business spreadsheet#

7 .rw -rw -rw -@ 613k sergiu 11 Jun 19:38 LaTeX Guide.pdf

8 .rw -rw -rw -@ 1.0k sergiu 12 Jun 15:27 Some document#

9 .rw -rw -rw -@ 1.0k sergiu 11 Jun 18:57 This presentation#

Listing 4.4: GDriveFS filesystem mount

32 CHAPTER 4. PERFORMANCE EVALUATION

From this point on, most operations perform as expected. My biggest
issue with GDriveFS is its async I/O strategy. Files written to the file system
are not instantly updated locally or on Drive. Reading a file too soon after
writing to it can cause data inconsistency. In my benchmarks, writing files
larger than 10 MB and reading them immediately afterwards often resulted
in checksum failures. Reading the same file multiple times in a row can also
result in different outputs.

In the situations where GDriveFS did work, it required significantly more
time than its competitors. This may be attributed to the fact that it is
implemented in Python, which is known to be slower than statically-typed
compiled languages.

Overall, the experience can only be described as messy. GDriveFS makes
it difficult to reason about the state of the operations performed, and what
you see is not always what you get.

4.2 google-drive-ocamlfuse

Compared to GDriveFS, google-drive-ocamlfuse is the result of the collective
effort of twice as many contributors. As of June 2018, it has been starred
by more than 2000 users on GitHub. For comparison, the programming
language it is written in only has 1850 stars [37].

This project is implemented in OCaml [30], “an industrial strength pro-
gramming language supporting functional, imperative and object-oriented
styles”. According to open-source software developer Thomas Leonard, OCaml
can often achieve better performance compared to Python [60]. Whether or
not this is the case in general, it is certainly reflected in the case of this
project. As it turns out, it is the best performer in several categories de-
scribed in section 4.3.

From a user perspective, google-drive-ocamlfuse also has its flaws. For
once, it does not support authentication using a generated code. This makes
it more difficult to use on a headless machine, but it is not a problem for most
users. Installation can also be tricky. I have personally run into issues such
as [32] while trying to set up the file system. The Arch Linux package [18]
does not automatically pull in all dependencies, requiring manual installation
of several packages.

However, after setting the file system up, all of these issues disappear.
The user experience is unimpaired. In all tests, there were no cases of data
inconsistency or file system errors.

4.3. BENCHMARKS 33

0

5

10
8.17

0.78
0.02

T
im

e
(s

ec
on

d
s)

GCSF google-drive-ocamlfuse GDriveFS

Figure 4.1: Mounting a file system with 2000 files and 100 directories, nested
on 4 levels.

4.3 Benchmarks

4.3.1 Methodology

All tests were performed on a machine with the following specifications:

• Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

• SSD storage

• 4 GB RAM

• 3 Gb/s internet connection

Unless stated otherwise, all file systems were mounted using their default
configuration. All results reported in the following sections are averaged
among 10 successive executions. The test account has been artificially pop-
ulated with 2000 files and 100 directories, totaling 2.8 GB. The maximum
depth of any file in the the file tree is 4.

4.3.2 Mounting and startup

Compared to google-drive-ocamlfuse and GDriveFS, GCSF populates the file
tree at mount time. As discussed in 3.5.1, the startup time of GCSF grows
linearly with the depth of the file tree. This means that the file system will
take longer to load deeply nested directories, but it has no problems with a
large number of files in a shallow file tree.

As seen in fig. 4.1, constructing the file tree at mount time increases
the loading time of the file system, but it significantly improves subsequent
operations. More on this in section 4.3.3.

34 CHAPTER 4. PERFORMANCE EVALUATION

0

20

40

60

80

0.26 2.35

62.79
T

im
e

(s
ec

on
d
s)

GCSF google-drive-ocamlfuse GDriveFS

Figure 4.2: Listing all files and directories recursively.

4.3.3 File listing

One of the first operations performed after mounting the file system is in
many cases a file listing. Whether this is achieved using a command line
tool such as ls or a GUI file explorer, the file system has to respond to
the same system calls – mainly readdir and lookup. For this benchmark,
I decided to measure the execution time of the tree command [39]. This
command explores an entire directory recursively, constructing an ASCII
tree-like structure of all files and directories.

This is where the longer mount time of GCSF pays off. As seen in fig. 4.2,
GCSF is one order of magnitude faster than google-drive-ocamlfuse, and
two orders of magnitude faster than GDriveFS. It should be noted that the
first listing performed on google-drive-ocamlfuse is considerably slower than
subsequent listings – approximately 60 seconds – because of the empty cache.
This outlier is not included in the computed average.

4.3.4 Reading – empty cache

The target of this test is to measure the execution time required for comput-
ing an MD5 checksum of a randomly generated file. This allows us to check
whether or not the file content is retrieved by each file system in its entirety
and without errors. Although computing the checksum takes some time in
itself, it only affects the measured times marginally.

As seen in fig. 4.3, google-drive-ocamlfuse tends to perform best on small
files. GCSF is slower because it makes an additional request to Google Drive:
first it creates an empty file and then it updates the file content. However,
the performance changes for larger files. In this case, an additional network
request becomes insignificant compared to each file system’s efficiency of
processing operations internally. As it turns out, GCSF performs slightly

4.3. BENCHMARKS 35

1 MB 10 MB 50 MB 100 MB 200 MB
0

20

40

60

80

100

120

1.3 2.3 4.9 6.8 8.2
1.5 1.8 5.4 8.2 9.9

0.7
6.9

26

60

107

T
im

e
(s

ec
on

d
s)

GCSF google-drive-ocamlfuse GDriveFS

Figure 4.3: Reading a file when the cache is empty.

better than google-drive-ocamlfuse.

Not the same can be said about GDriveFS. Its execution time grows
almost linearly with the file size. Moreover, the computed checksums are
incorrect in many cases. Waiting for the file system to re-synchronize with
Drive may fix these errors, but the inconvenience of not knowing whether or
not the file system introduced errors to user data still exists.

File size (MB)
Checksum errors (%)
Fresh read Cached read

1 20 10
10 40 60
50 90 70
100 80 100
200 90 100

Table 4.1: Checksum errors reported when reading from GDriveFS

4.3.5 Reading – cached

Both GCSF and google-drive-ocamlfuse provide a caching mechanism. GCSF
uses an in-memory least recently used (LRU) cache in order to preserve file
content for some time after retrieving it from Drive, whereas google-drive-
ocamlfuse uses an on-disk SQLite 3 database. Both methods have their
advantages and disadvantages. Retrieving data from memory is faster but

36 CHAPTER 4. PERFORMANCE EVALUATION

1 MB 10 MB 50 MB 100 MB 200 MB
0

20

40

60

80

100

0 0 0.1 0.3 0.50 0.2 0.7 1.4 2.80.5 4.5

27

50

95
T

im
e

(s
ec

on
d
s)

GCSF google-drive-ocamlfuse GDriveFS

Figure 4.4: Reading a cached file.

the available capacity can be a limiting factor. Caching on disk removes this
limitation, at the cost of slower speeds.

As far as I can tell, GDriveFS only caches authentication tokens and the
structure of the file tree. This is reflected in fig. 4.4. As was the case in
section 4.3.4, checksum errors still occur with GDriveFS. The exact values
can be found in table 4.1.

Chapter 5

Conclusion

I personally consider that GCSF is a worthwhile alternative for users who
are dissatisfied with existing tools. In many cases, it provides more control
compared to the official web platform. As illustrated in Chapter 4, it can
also achieve better performance and stability than similar FUSE-based file
systems.

This result is especially significant considering the short development cy-
cle of just 11 weeks. The projects I compared it against have been in devel-
opment for multiple years.

As I plan to continue working on GCSF, I have assembled a list of areas
for improvement. In no particular order:

• Trash directory. Currently, GCSF shows trashed files and directories
but only has limited functionality in this area. Removing files currently
moves them to trash, and there is no way to permanently delete files.
This will be addressed by introducing context-aware behavior: remov-
ing a file from any directory will move it to trash, whereas removing a
file from trash will permanently delete it.

• ‘Shared with me’ collection and team drives. GCSF only supports the
‘My Drive’ collection.

• Faster mount time. The number of network requests required for popu-
lating the file system can be reduced from O(tree depth) to O(1), with
the addition of a more complex tree building strategy.

• Extended attributes. Google Drive stores several custom file attributes
in addition to those reported by lsattr.

• Identically named files. Some operations are not well defined in the case
of identically named files because this concept is foreign to traditional
file systems. GCSF makes an effort to differentiate them by adding

37

38 CHAPTER 5. CONCLUSION

specific suffixes (e.g hello.txt.1, hello.txt.2 and so on). When a
user moves such a file to a different directory, it is not immediately clear
what the correct behavior should be. Should the file keep its suffix even
if not necessary, just for the sake of consistency? Should the suffix be
adapted to match the identical files in the new directory or be removed
altogether? A consistent strategy must be determined.

• User specified MIME type for special Drive files. GCSF guesses the best
export format for Docs, Sheets and Slides. This is the format used by
the OpenOffice suite. Users should be able to specify any valid format
accepted by Google Drive.

• Real file size of exportable Drive documents. GCSF reports a fixed size
of 10 MB for Docs, Sheets and Slides, which is not factually accurate.
One alternative is to always report the file size that each specific doc-
ument would have when exported in the default format.

• gzip compression. Google suggests the use of gzip for compressing
files before transferring over the network. This requires additional CPU
time to decompress the results, but reduces the bandwidth needed in
most cases. The trade-off is usually worthwhile.

• Concurrency. GCSF can only perform one operation at a time. This
is usually not a problem, but in some cases it impedes user experience.

• Support for symbolic links.

• Package releases for multiple Linux distributions. The de facto method
of installing GCSF is via the Cargo package manager. This requires a
local installation of both Rust and Cargo and adds some time required
for building the project. Packaging binaries for multiple operating sys-
tems and architectures would lower the barrier of using the application.

• File permissions. Enforcing file permissions would improve user expe-
rience in the case of multi-user environments.

5.1 External links

The entire project is hosted on GitHub [68]. It is also published as a Rust
crate on crates.io [70]. The latest documentation is accessible on docs.rs [69].

crates.io
docs.rs

Bibliography

[1] Apple Music passes 11M subscribers as iCloud hits 782M users.
http://appleinsider.com/articles/16/02/12/
apple-music-passes-11m-subscribers-as-icloud-hits-782m-users.
[Online; accessed 18 June 2018].

[2] Backup and Sync homepage - no Drive app for Linux.
https://www.google.com/drive/download/backup-and-sync/. [Online;
accessed 21 June 2018].

[3] Box hires Nasdaq exec to head financial services practice.
http://fortune.com/2015/08/19/box-financial-services/. [Online;
accessed 18 June 2018].

[4] C++11 vs Rust comparison.
https://github.com/dmitryikh/rust-vs-cpp-bench. [Online; accessed 21
June 2018].

[5] Custom fork of the Google Drive API library for Rust.
https://crates.io/crates/google-drive3-fork.

[6] Developer Survey Results 2018.
https://insights.stackoverflow.com/survey/2018/#technology. [Online;
accessed 13 June 2018].

[7] Developer Survey Results 2018: most loved, dreaded and wanted
technologies. https://insights.stackoverflow.com/survey/2018#
most-loved-dreaded-and-wanted. [Online; accessed 13 June 2018].

[8] Docs.rs – an open source project to host documentation of crates for
the Rust Programming Language. http://docs.rs. [Online; accessed 21
June 2018].

[9] Drive changes.list endpoint.
https://developers.google.com/drive/api/v3/reference/changes/list.
[Online; accessed 21 June 2018].

39

http://appleinsider.com/articles/16/02/12/apple-music-passes-11m-subscribers-as-icloud-hits-782m-users
http://appleinsider.com/articles/16/02/12/apple-music-passes-11m-subscribers-as-icloud-hits-782m-users
https://www.google.com/drive/download/backup-and-sync/
http://fortune.com/2015/08/19/box-financial-services/
https://github.com/dmitryikh/rust-vs-cpp-bench
https://crates.io/crates/google-drive3-fork
https://insights.stackoverflow.com/survey/2018/#technology
https://insights.stackoverflow.com/survey/2018#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018#most-loved-dreaded-and-wanted
http://docs.rs
https://developers.google.com/drive/api/v3/reference/changes/list

40 BIBLIOGRAPHY

[10] Dropbox Android App.
https://play.google.com/store/apps/details?id=com.dropbox.android.
[Online; accessed 13 June 2018].

[11] fuse::spawn_mount unsafe method.
https://docs.rs/fuse/0.3.1/fuse/fn.spawn mount.html. [Online;
accessed 23 June 2018].

[12] GDriveFS Issue #195: SSLHandshakeError.
https://github.com/dsoprea/GDriveFS/issues/195. [Online; accessed
13 June 2018].

[13] Get 3TB of Lifetime Cloud Storage for Under $70.
https://www.thedailybeast.com/
get-3tb-of-lifetime-cloud-storage-for-under-dollar70. [Online; accessed
18 June 2018].

[14] Google API NodeJS Client Issue #1136: files.list method returns
“Bad Request error 400” when sharedWithMe = false.
https://github.com/google/google-api-nodejs-client/issues/1136.
[Online; accessed 13 June 2018].

[15] Google Drive Android App. https://play.google.com/store/apps/
details?id=com.google.android.apps.docs. [Online; accessed 13 June
2018].

[16] Google Drive API: files.list endpoint.
https://developers.google.com/drive/api/v3/reference/files/list.
[Online; accessed 13 June 2018].

[17] Google Drive API sharedWithMe=false causes “500 Internal Server
Error”. https://goo.gl/eshSvE. [Online; accessed 13 June 2018].

[18] google-drive-ocamlfuse installation. https://github.com/astrada/
google-drive-ocamlfuse/wiki/Installation#archlinux. [Online; accessed
13 June 2018].

[19] Google Drive Pricing Guide. https://www.google.com/drive/pricing/.
[Online; accessed 13 June 2018].

[20] Google Drive Reliability.
https://support.google.com/googlecloud/answer/6056635?hl=en.
[Online; accessed 21 June 2018].

https://play.google.com/store/apps/details?id=com.dropbox.android
https://docs.rs/fuse/0.3.1/fuse/fn.spawn_mount.html
https://github.com/dsoprea/GDriveFS/issues/195
https://www.thedailybeast.com/get-3tb-of-lifetime-cloud-storage-for-under-dollar70
https://www.thedailybeast.com/get-3tb-of-lifetime-cloud-storage-for-under-dollar70
https://github.com/google/google-api-nodejs-client/issues/1136
https://play.google.com/store/apps/details?id=com.google.android.apps.docs
https://play.google.com/store/apps/details?id=com.google.android.apps.docs
https://developers.google.com/drive/api/v3/reference/files/list
https://goo.gl/eshSvE
https://github.com/astrada/google-drive-ocamlfuse/wiki/Installation#archlinux
https://github.com/astrada/google-drive-ocamlfuse/wiki/Installation#archlinux
https://www.google.com/drive/pricing/
https://support.google.com/googlecloud/answer/6056635?hl=en

BIBLIOGRAPHY 41

[21] Google Drive REST API Overview.
https://developers.google.com/drive/api/v3/about-sdk. [Online;
accessed 13 June 2018].

[22] Google Drive SDK sharedWithMe = false search query not works.
https://stackoverflow.com/questions/24515151/
google-drive-sdk-sharedwithme-false-search-query-not-works. [Online;
accessed 13 June 2018].

[23] Google Drive UI updates. https://gsuiteupdates.googleblog.com/2018/
05/google-drive-ui-updates.html. [Online; accessed 13 June 2018].

[24] How Google created a custom Material theme. https://material.io/
articles/how-google-created-a-custom-material-theme.html#01.
[Online; accessed 13 June 2018].

[25] How the habit of forgetting became a $10 billion business idea.
http://theunvisited.in/
how-habit-of-forgetting-became-10-billion-business-idea/. [Online;
accessed 18 June 2018].

[26] iCloud – The best place for all your photos, files, and more.
https://www.apple.com/lae/icloud/. [Online; accessed 18 June 2018].

[27] joe42/CloudFusion – Linux file system (FUSE) to access Dropbox,
Sugarsync, Amazon S3, Google Storage, Google Drive or WebDAV
servers. https://github.com/joe42/CloudFusion. [Online; accessed 17
June 2018].

[28] Libfuse repository on GitHub. https://github.com/libfuse/libfuse.
[Online; accessed 13 June 2018].

[29] Linux Market Share. https://goo.gl/QPcwGZ. [Online; accessed 13
June 2018].

[30] OCaml. https://ocaml.org/. [Online; accessed 17 June 2018].

[31] OneDrive Android App. https://goo.gl/93Ffot. [Online; accessed 13
June 2018].

[32] OPAM depext issue #75: opam install depext fails on macOS.
https://github.com/ocaml/opam-depext/issues/75. [Online; accessed
13 June 2018].

https://developers.google.com/drive/api/v3/about-sdk
https://stackoverflow.com/questions/24515151/google-drive-sdk-sharedwithme-false-search-query-not-works
https://stackoverflow.com/questions/24515151/google-drive-sdk-sharedwithme-false-search-query-not-works
https://gsuiteupdates.googleblog.com/2018/05/google-drive-ui-updates.html
https://gsuiteupdates.googleblog.com/2018/05/google-drive-ui-updates.html
https://material.io/articles/how-google-created-a-custom-material-theme.html#01
https://material.io/articles/how-google-created-a-custom-material-theme.html#01
http://theunvisited.in/how-habit-of-forgetting-became-10-billion-business-idea/
http://theunvisited.in/how-habit-of-forgetting-became-10-billion-business-idea/
https://www.apple.com/lae/icloud/
https://github.com/joe42/CloudFusion
https://github.com/libfuse/libfuse
https://goo.gl/QPcwGZ
https://ocaml.org/
https://goo.gl/93Ffot
https://github.com/ocaml/opam-depext/issues/75

42 BIBLIOGRAPHY

[33] Rust FUSE crate - Filesystem in Userspace.
https://crates.io/crates/fuse. [Online; accessed 13 June 2018].

[34] Rust Website. https://www.rust-lang.org/en-US/. [Online; accessed
13 June 2018].

[35] SSH File Transfer Protocol.
https://tools.ietf.org/html/draft-moonesamy-secsh-filexfer-00. [Online;
accessed 13 June 2018].

[36] SSHFS: A network filesystem client to connect to SSH servers.
https://github.com/libfuse/sshfs. [Online; accessed 13 June 2018].

[37] The core OCaml system: compilers, runtime system, base libraries.
https://github.com/ocaml/ocaml. [Online; accessed 17 June 2018].

[38] The Rust community’s crate registry. http://crates.io. [Online;
accessed 13 June 2018].

[39] tree – Linux man page. https://linux.die.net/man/1/tree. [Online;
accessed 18 June 2018].

[40] WikipediaFS. http://wikipediafs.sourceforge.net/. [Online; accessed 13
June 2018].

[41] zond/futon – Google Drive on FUSE. https://github.com/zond/futon.
[Online; accessed 17 June 2018].

[42] Blandy, Jim. Why Rust? Trustworthy, Concurrent Systems
Programming. O’Reilly Media, Inc, 2015.

[43] Cline, James. jcline/fuse-google-drive – A fuse filesystem wrapper for
Google Drive. https://github.com/jcline/fuse-google-drive. [Online;
accessed 17 June 2018].

[44] Dignan, Larry. Google plans to leverage G Drive for broader enterprise
footprint, team management and collaboration.
https://goo.gl/DvTfXM. [Online; accessed 13 June 2018].

[45] Gallagher, Sean. Hands-on with the Google Drive for iOS app: mostly
read only. https://arstechnica.com/information-technology/2012/06/
hands-on-with-the-google-drive-for-ios-app-mostly-read-only/.
[Online; accessed 13 June 2018].

https://crates.io/crates/fuse
https://www.rust-lang.org/en-US/
https://tools.ietf.org/html/draft-moonesamy-secsh-filexfer-00
https://github.com/libfuse/sshfs
https://github.com/ocaml/ocaml
http://crates.io
https://linux.die.net/man/1/tree
http://wikipediafs.sourceforge.net/
https://github.com/zond/futon
https://github.com/jcline/fuse-google-drive
https://goo.gl/DvTfXM
https://arstechnica.com/information-technology/2012/06/hands-on-with-the-google-drive-for-ios-app-mostly-read-only/
https://arstechnica.com/information-technology/2012/06/hands-on-with-the-google-drive-for-ios-app-mostly-read-only/

BIBLIOGRAPHY 43

[46] Gamma, Erich and Johnson, Ralph and Vlissides, John and Helm
Richard. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[47] Graham, Paul. Hackers & Painters: Big Ideas from the Computer Age.
O’Reilly Media, Inc, 2004.

[48] Griffin, Andrew. Gmail, Google Drive down: many Google services hit
by widespread outage. https://goo.gl/DFrM1v. [Online; accessed 13
June 2018].

[49] Gupta, Ankit. 10 years of OneDrive: Microsoft OneDrive celebrates its
10th birthday.
https://news.thewindowsclub.com/10-years-of-onedrive-90396/.
[Online; accessed 18 June 2018].

[50] Hachman, Mark. Google Drive is being replaced by Backup and Sync:
What to expect.
https://www.pcworld.com/article/3223136/data-center-cloud/
google-drive-is-being-replaced-by-backup-and-sync-what-to-expect.
html. [Online; accessed 13 June 2018].

[51] Houston, W. Andrew. Registration statement of Dropbox, Inc.
https://www.sec.gov/Archives/edgar/data/1467623/
000119312518055809/d451946ds1.htm. [Online; accessed 18 June 2018].

[52] Kincaid, Jason. Dropbox Acquires The Domain Everyone Thought It
Had: Dropbox.com. https://techcrunch.com/2009/10/13/
dropbox-acquires-the-domain-everyone-thought-it-had-dropbox-com/.
[Online; accessed 13 June 2018].

[53] Kincaid, Jason. Dropbox Security Bug Made Passwords Optional For
Four Hours. https://techcrunch.com/2011/06/20/
dropbox-security-bug-made-passwords-optional-for-four-hours/.
[Online; accessed 13 June 2018].

[54] Klabnik, Steve and Nichols, Carol. The Rust Programming Language.
No Starch Press, 2018.

[55] Klein, Andy. Hard Drive Cost Per Gigabyte.
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/.
[Online; accessed 13 June 2018].

https://goo.gl/DFrM1v
https://news.thewindowsclub.com/10-years-of-onedrive-90396/
https://www.pcworld.com/article/3223136/data-center-cloud/google-drive-is-being-replaced-by-backup-and-sync-what-to-expect.html
https://www.pcworld.com/article/3223136/data-center-cloud/google-drive-is-being-replaced-by-backup-and-sync-what-to-expect.html
https://www.pcworld.com/article/3223136/data-center-cloud/google-drive-is-being-replaced-by-backup-and-sync-what-to-expect.html
https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm
https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm
Dropbox.com
https://techcrunch.com/2009/10/13/dropbox-acquires-the-domain-everyone-thought-it-had-dropbox-com/
https://techcrunch.com/2009/10/13/dropbox-acquires-the-domain-everyone-thought-it-had-dropbox-com/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

44 BIBLIOGRAPHY

[56] Krumins, Carl. Smartphone Ownership, Usage And Penetration By
Country. https://thehub.smsglobal.com/
smartphone-ownership-usage-and-penetration. [Online; accessed 13
June 2018].

[57] Kuo, Carbo. BYVoid/gdrive – A user-level filesystem wrapper of
Google Drive. https://github.com/BYVoid/gdrive. [Online; accessed
17 June 2018].

[58] Lardinois, Frederic. Google updates Drive with a focus on its business
users. https://goo.gl/tUU3CX. [Online; accessed 18 June 2018].

[59] Leighton, Ralph and Feynman, Richard. Surely You’re Joking, Mr.
Feynman! W.W. Norton, 1985.

[60] Leonard, Thomas. Python to OCaml: Retrospective. http://roscidus.
com/blog/blog/2014/06/06/python-to-ocaml-retrospective/. [Online;
accessed 13 June 2018].

[61] Mendelsohn, Tom. Dropbox hackers stole e-mail addresses, hashed
passwords from 68M accounts.
https://arstechnica.com/information-technology/2016/08/
dropbox-hackers-stole-email-addresses-hashed-passwords-68m-accounts/.
[Online; accessed 13 June 2018].

[62] Mihov, Dimitar. Google suffered a meltdown as Gmail, Maps and
YouTube went down. https://thenextweb.com/google/2017/09/12/
google-down-gmail-youtube-maps/. [Online; accessed 13 June 2018].

[63] Noyes, Katherine. Google Drive for Linux Is on the Way. https://www.
pcworld.com/article/254488/google drive for linux is on the way.html.
[Online; accessed 13 June 2018].

[64] Oprea, Dustin. GDriveFS – An innovative FUSE wrapper for Google
Drive. https://github.com/dsoprea/GDriveFS. [Online; accessed 17
June 2018].

[65] Oprea, Dustin. GDriveFS documentation. https://github.com/
dsoprea/GDriveFS/blob/master/gdrivefs/resources/README.rst.
[Online; accessed 17 June 2018].

[66] Perez, Sarah. Google Drive Experiencing Outage. https://techcrunch.
com/2013/03/18/google-drive-experiencing-intermittent-issues/.
[Online; accessed 13 June 2018].

https://thehub.smsglobal.com/smartphone-ownership-usage-and-penetration
https://thehub.smsglobal.com/smartphone-ownership-usage-and-penetration
https://github.com/BYVoid/gdrive
https://goo.gl/tUU3CX
http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective/
http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective/
https://arstechnica.com/information-technology/2016/08/dropbox-hackers-stole-email-addresses-hashed-passwords-68m-accounts/
https://arstechnica.com/information-technology/2016/08/dropbox-hackers-stole-email-addresses-hashed-passwords-68m-accounts/
https://thenextweb.com/google/2017/09/12/google-down-gmail-youtube-maps/
https://thenextweb.com/google/2017/09/12/google-down-gmail-youtube-maps/
https://www.pcworld.com/article/254488/google_drive_for_linux_is_on_the_way.html
https://www.pcworld.com/article/254488/google_drive_for_linux_is_on_the_way.html
https://github.com/dsoprea/GDriveFS
https://github.com/dsoprea/GDriveFS/blob/master/gdrivefs/resources/README.rst
https://github.com/dsoprea/GDriveFS/blob/master/gdrivefs/resources/README.rst
https://techcrunch.com/2013/03/18/google-drive-experiencing-intermittent-issues/
https://techcrunch.com/2013/03/18/google-drive-experiencing-intermittent-issues/

BIBLIOGRAPHY 45

[67] Pichai, Sundar. Introducing Google Drive. . . yes, really.
https://googleblog.blogspot.ro/2012/04/
introducing-google-drive-yes-really.html. [Online; accessed 13 June
2018].

[68] Pus,cas, , Sergiu. GCSF – a virtual file system based on Google Drive.
https://github.com/harababurel/gcsf. [Online; accessed 23 June 2018].

[69] Pus,cas, , Sergiu. GCSF Documentation.
https://docs.rs/gcsf/latest/gcsf/. [Online; accessed 23 June 2018].

[70] Pus,cas, , Sergiu. GCSF Rust Crate. https://crates.io/crates/gcsf.
[Online; accessed 23 June 2018].

[71] S2Games. S2Games/drivefs – fuse file system for google drive written
in pure go. https://github.com/S2Games/drivefs. [Online; accessed 17
June 2018].

[72] Sahney, Aakash and Loxton, David. Introducing Backup and Sync for
Google Photos and Google Drive. https://www.blog.google/products/
photos/introducing-backup-and-sync-google-photos-and-google-drive/.
[Online; accessed 13 June 2018].

[73] Strada, Alessandro. astrada/google-drive-ocamlfuse – FUSE filesystem
over Google Drive.
https://github.com/astrada/google-drive-ocamlfuse. [Online; accessed
17 June 2018].

[74] Svetlik, Joe. Google goes down for 5 minutes, Internet traffic drops
40%. https://www.cnet.com/news/
google-goes-down-for-5-minutes-internet-traffic-drops-40/. [Online;
accessed 13 June 2018].

[75] Tanenbaum, S. Andrew. Modern Operating Systems. Pearson
Education International, 3rd edition, 2007.

[76] Thiel, Sebastian. A binding and CLI generator for all Google APIs.
https://github.com/Byron/google-apis-rs. [Online; accessed 13 June
2018].

[77] Thiel, Sebastian. GitHub profile. https://github.com/Byron. [Online;
accessed 13 June 2018].

https://googleblog.blogspot.ro/2012/04/introducing-google-drive-yes-really.html
https://googleblog.blogspot.ro/2012/04/introducing-google-drive-yes-really.html
https://github.com/harababurel/gcsf
https://docs.rs/gcsf/latest/gcsf/
https://crates.io/crates/gcsf
https://github.com/S2Games/drivefs
https://www.blog.google/products/photos/introducing-backup-and-sync-google-photos-and-google-drive/
https://www.blog.google/products/photos/introducing-backup-and-sync-google-photos-and-google-drive/
https://github.com/astrada/google-drive-ocamlfuse
https://www.cnet.com/news/google-goes-down-for-5-minutes-internet-traffic-drops-40/
https://www.cnet.com/news/google-goes-down-for-5-minutes-internet-traffic-drops-40/
https://github.com/Byron/google-apis-rs
https://github.com/Byron

46 BIBLIOGRAPHY

[78] Voelker, Abe. How long since Google said a Google Drive Linux client
is coming. https://abevoelker.github.io/
how-long-since-google-said-a-google-drive-linux-client-is-coming/.
[Online; accessed 13 June 2018].

[79] Weidenfeld, Dominik. dweidenfeld/plexdrive – mounts your Google
Drive FUSE filesystem (optimized for media playback).
https://github.com/dweidenfeld/plexdrive. [Online; accessed 17 June
2018].

[80] Woods, Ben. Google Drive and Docs are down for some users,
company is investigating. https://thenextweb.com/google/2014/10/
27/google-drive-docs-users-company-investigating/. [Online; accessed
13 June 2018].

[81] Woods, Ben. Google Drive and Gmail are down for some users around
the world. https://thenextweb.com/google/2016/01/26/
google-drive-is-down-for-some-users-around-the-world/. [Online;
accessed 21 June 2018].

[82] Yen, Eric. thejinx0r/DriveFS – A google drive fuse filesystem
implemented in C++. https://github.com/thejinx0r/DriveFS. [Online;
accessed 17 June 2018].

[83] Yen, Eric. thejinx0r/node-gdrive-fuse – a simple filesystem written in
NodeJS to mount Google Drive as a local drive.
https://github.com/thejinx0r/node-gdrive-fuse. [Online; accessed 17
June 2018].

https://abevoelker.github.io/how-long-since-google-said-a-google-drive-linux-client-is-coming/
https://abevoelker.github.io/how-long-since-google-said-a-google-drive-linux-client-is-coming/
https://github.com/dweidenfeld/plexdrive
https://thenextweb.com/google/2014/10/27/google-drive-docs-users-company-investigating/
https://thenextweb.com/google/2014/10/27/google-drive-docs-users-company-investigating/
https://thenextweb.com/google/2016/01/26/google-drive-is-down-for-some-users-around-the-world/
https://thenextweb.com/google/2016/01/26/google-drive-is-down-for-some-users-around-the-world/
https://github.com/thejinx0r/DriveFS
https://github.com/thejinx0r/node-gdrive-fuse

	Introduction
	State of the art
	Cloud storage services
	User interface
	File sync
	Main advantages
	Cloud storage
	File sync
	Service integration

	Main disadvantages
	File sync
	Security
	Availability
	Power user experience

	Proposed approach
	Aim
	Summary
	Usage
	Exceptions

	Implementation
	Rust
	FUSE
	Drive API
	Architecture
	Configuration
	Caching and laziness

	Problems encountered
	Shared files
	`My Drive' id
	File attributes
	Updating file metadata on Drive
	Detecting remote changes

	Performance evaluation
	GDriveFS
	google-drive-ocamlfuse
	Benchmarks
	Methodology
	Mounting and startup
	File listing
	Reading – empty cache
	Reading – cached

	Conclusion
	External links

	Bibliography

